Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649227

RESUMO

The population structure of social species has important consequences for both their demography and transmission of their pathogens. We develop a metapopulation model that tracks two key components of a species' social system: average group size and number of groups within a population. While the model is general, we parameterize it to mimic the dynamics of the Yellowstone wolf population and two associated pathogens: sarcoptic mange and canine distemper. In the initial absence of disease, we show that group size is mainly determined by the birth and death rates and the rates at which groups fission to form new groups. The total number of groups is determined by rates of fission and fusion, as well as environmental resources and rates of intergroup aggression. Incorporating pathogens into the models reduces the size of the host population, predominantly by reducing the number of social groups. Average group size responds in more subtle ways: infected groups decrease in size, but uninfected groups may increase when disease reduces the number of groups and thereby reduces intraspecific aggression. Our modeling approach allows for easy calculation of prevalence at multiple scales (within group, across groups, and population level), illustrating that aggregate population-level prevalence can be misleading for group-living species. The model structure is general, can be applied to other social species, and allows for a dynamic assessment of how pathogens can affect social structure and vice versa.


Assuntos
Cinomose , Modelos Biológicos , Escabiose , Lobos , Animais , Cinomose/epidemiologia , Cinomose/transmissão , Dinâmica Populacional , Prevalência , Escabiose/epidemiologia , Escabiose/transmissão , Escabiose/veterinária
2.
Proc Natl Acad Sci U S A ; 117(50): 31954-31962, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229566

RESUMO

Canine distemper virus (CDV) has recently emerged as an extinction threat for the endangered Amur tiger (Panthera tigris altaica). CDV is vaccine-preventable, and control strategies could require vaccination of domestic dogs and/or wildlife populations. However, vaccination of endangered wildlife remains controversial, which has led to a focus on interventions in domestic dogs, often assumed to be the source of infection. Effective decision making requires an understanding of the true reservoir dynamics, which poses substantial challenges in remote areas with diverse host communities. We carried out serological, demographic, and phylogenetic studies of dog and wildlife populations in the Russian Far East to show that a number of wildlife species are more important than dogs, both in maintaining CDV and as sources of infection for tigers. Critically, therefore, because CDV circulates among multiple wildlife sources, dog vaccination alone would not be effective at protecting tigers. We show, however, that low-coverage vaccination of tigers themselves is feasible and would produce substantive reductions in extinction risks. Vaccination of endangered wildlife provides a valuable component of conservation strategies for endangered species.


Assuntos
Cinomose/prevenção & controle , Espécies em Perigo de Extinção/economia , Tigres/virologia , Vacinação/economia , Vacinas Virais/administração & dosagem , Animais , Animais Selvagens/virologia , Tomada de Decisões Gerenciais , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cinomose/epidemiologia , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/imunologia , Cães/sangue , Cães/virologia , Estudos de Viabilidade , Feminino , Masculino , Modelos Econômicos , Filogenia , Estudos Soroepidemiológicos , Sibéria , Tigres/sangue , Vacinação/métodos , Cobertura Vacinal/economia , Cobertura Vacinal/métodos , Cobertura Vacinal/organização & administração , Vacinas Virais/economia
3.
PLoS One ; 15(1): e0220593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914123

RESUMO

BACKGROUND: Domestic dogs (Canis familiaris) have the potential to act as disease reservoirs for wildlife and are important sentinels for common circulating pathogens. Therefore, the infectious disease seroprevalence among domestic dogs in northern Botswana may be indicative of pathogen exposure of various wildlife species. The objective of this study was to assess the seroprevalence of Ehrlichia spp., Borrelia burgdorferi, Anaplasma spp., Dirofilaria immitis, canine adenovirus, canine parvovirus, and canine distemper virus in domestic dogs as proxies of disease prevalence in the local wildlife in the Okavango Delta region of Botswana. Statistical analysis assessed crude and factor-specific seroprevalence proportions in relation to age, sex, and geographical location as predictors of seropositivity. Logistic regression was used to identify adjusted predictors of seropositivity for each of the pathogens of interest. RESULTS: Samples from 233 dogs in a total of seven locations in Maun, Botswana, and surrounding villages were collected and serologically analyzed. No dogs were seropositive for B. burgdorferi, while low seroprevalence proportions were observed for Anaplasma spp. (2.2%) and D. immitis (0.9%). Higher seroprevalence proportions were observed for the tick-borne pathogen Ehrlichia spp. (21.0%), and 19.7% were seropositive for canine adenovirus (hepatitis). The highest seroprevalence proportions were for canine parvovirus (70.0%) and canine distemper virus (44.8%). The predictors of seropositivity revealed that adults were more likely to be seropositive for canine adenovirus, canine distemper virus, and canine parvovirus than juveniles, and location was a risk factor for canine adenovirus, canine distemper virus, canine parvovirus, and Ehrlichia spp. CONCLUSIONS: Results indicate that increasing tick control and vaccination campaigns for domestic dogs may improve the health of domestic animals, and potentially wildlife and humans in the Okavango Delta since viral and vector-borne bacterial pathogens can be transmitted between them.


Assuntos
Anaplasmose/epidemiologia , Dirofilariose/epidemiologia , Cinomose/epidemiologia , Doenças do Cão/epidemiologia , Ehrlichiose/veterinária , Doença de Lyme/veterinária , Infecções por Parvoviridae/veterinária , Anaplasma/isolamento & purificação , Anaplasma/patogenicidade , Anaplasmose/microbiologia , Anaplasmose/transmissão , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Anti-Helmínticos/sangue , Anticorpos Antivirais/sangue , Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/patogenicidade , Botsuana/epidemiologia , Dirofilaria immitis/isolamento & purificação , Dirofilaria immitis/patogenicidade , Dirofilariose/microbiologia , Dirofilariose/transmissão , Cinomose/microbiologia , Cinomose/transmissão , Vírus da Cinomose Canina/isolamento & purificação , Vírus da Cinomose Canina/patogenicidade , Doenças do Cão/microbiologia , Doenças do Cão/transmissão , Cães , Ehrlichia/isolamento & purificação , Ehrlichia/patogenicidade , Ehrlichiose/epidemiologia , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Feminino , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Masculino , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/microbiologia , Infecções por Parvoviridae/transmissão , Parvovirus Canino/isolamento & purificação , Parvovirus Canino/patogenicidade , Animais de Estimação/microbiologia , Animais de Estimação/parasitologia , Animais de Estimação/virologia , Estudos Soroepidemiológicos , Carrapatos/microbiologia
4.
PLoS One ; 14(12): e0220874, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805044

RESUMO

Dogs are often commensal with human settlements. In areas where settlements are adjacent to wildlife habitat, the management of dogs can affect risk of spillover of disease to wildlife. We assess dog husbandry practices, and measure the prevalence of Canine Distemper Virus (CDV) in dogs, in 10 villages in Nepal's Annapurna Conservation Area (ACA), an important region for Himalayan wildlife. A high proportion (58%) of owned dogs were allowed by their owners to roam freely, and many village dogs originated from urban areas outside the region. CDV antibodies, indicating past exposure, were detected in 70% of dogs, and 13% were positive for P-gene, suggesting current circulation of CDV. This is the first detection of canine distemper virus in a National Park in Nepal Himalaya. Dogs were generally in good condition, and none exhibited clinical signs of CDV infection, which suggests that infections were asymptomatic. CDV exposure varied with village location and age of dogs, but this variation was minor, consistent with high rates of movement of dogs across the region maintaining high seroprevalence. Residents reported the occurrence of several species of wild carnivores in or close to villages. These results suggest a high potential for transmission of CDV from village dogs to wild carnivores in ACA. We suggest that control of dog immigration, along with vaccination and neutering of dogs could mitigate the risk of CDV spillover into wild carnivore populations.


Assuntos
Criação de Animais Domésticos , Cinomose/epidemiologia , Animais , Animais Selvagens , Comportamento , Carnívoros/virologia , Cinomose/transmissão , Vírus da Cinomose Canina/isolamento & purificação , Cães , Feminino , Humanos , Masculino , Nepal/epidemiologia , Parques Recreativos , Prevalência , Estudos Soroepidemiológicos
5.
Sci Rep ; 9(1): 15569, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700005

RESUMO

Climate change-driven alterations in Arctic environments can influence habitat availability, species distributions and interactions, and the breeding, foraging, and health of marine mammals. Phocine distemper virus (PDV), which has caused extensive mortality in Atlantic seals, was confirmed in sea otters in the North Pacific Ocean in 2004, raising the question of whether reductions in sea ice could increase contact between Arctic and sub-Arctic marine mammals and lead to viral transmission across the Arctic Ocean. Using data on PDV exposure and infection and animal movement in sympatric seal, sea lion, and sea otter species sampled in the North Pacific Ocean from 2001-2016, we investigated the timing of PDV introduction, risk factors associated with PDV emergence, and patterns of transmission following introduction. We identified widespread exposure to and infection with PDV across the North Pacific Ocean beginning in 2003 with a second peak of PDV exposure and infection in 2009; viral transmission across sympatric marine mammal species; and association of PDV exposure and infection with reductions in Arctic sea ice extent. Peaks of PDV exposure and infection following 2003 may reflect additional viral introductions among the diverse marine mammals in the North Pacific Ocean linked to change in Arctic sea ice extent.


Assuntos
Organismos Aquáticos/virologia , Cetáceos/virologia , Vírus da Cinomose Focina/metabolismo , Cinomose , Aquecimento Global , Gelo , Lontras/virologia , Animais , Regiões Árticas , Cinomose/epidemiologia , Cinomose/transmissão , Vírus da Cinomose Focina/patogenicidade
6.
Viruses ; 11(7)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247987

RESUMO

Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections.


Assuntos
Vírus da Cinomose Canina/genética , Cinomose/virologia , Evolução Molecular , Especificidade de Hospedeiro , Animais , Animais Selvagens/virologia , Cinomose/transmissão , Vírus da Cinomose Canina/classificação , Vírus da Cinomose Canina/isolamento & purificação , Vírus da Cinomose Canina/fisiologia , Cães , Filogenia
7.
PLoS One ; 14(3): e0213515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30861028

RESUMO

Information on the population dynamics of a reservoir species have been increasingly adopted to understand and eventually predict the dispersal patterns of infectious diseases throughout an area. Although potentially relevant, to date there are no studies which have investigated the genetic structure of the red fox population in relation to infectious disease dynamics. Therefore, we genetically and spatially characterised the red fox population in the area stretching between the Eastern and Dinaric Alps, which has been affected by both distemper and rabies at different time intervals. Red foxes collected from north-eastern Italy, Austria, Slovenia and Croatia between 2006-2012, were studied using a set of 21 microsatellite markers. We confirmed a weak genetic differentiation within the fox population using Bayesian clustering analyses, and we were able to differentiate the fox population into geographically segregated groups. Our finding might be due to the presence of geographical barriers that have likely influenced the distribution of the fox population, limiting in turn gene flow and spread of infectious diseases. Focusing on the Italian red fox population, we observed interesting variations in the prevalence of both diseases among distinct fox clusters, with the previously identified Italy 1 and Italy 2 rabies as well as distemper viruses preferentially affecting different sub-groups identified in the study. Knowledge of the regional-scale population structure can improve understanding of the epidemiology and spread of diseases. Our study paves the way for an integrated approach for disease control coupling pathogen, host and environmental data to inform targeted control programs in the future.


Assuntos
Cinomose , Raposas/genética , Repetições de Microssatélites , Raiva , Animais , Áustria/epidemiologia , Croácia/epidemiologia , Cinomose/epidemiologia , Cinomose/genética , Cinomose/transmissão , Cães , Feminino , Masculino , Prevalência , Raiva/epidemiologia , Raiva/genética , Raiva/transmissão , Raiva/veterinária , Eslovênia/epidemiologia
8.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793948

RESUMO

Upon infection, morbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) initially target immune cells via the signaling lymphocyte activation molecule (SLAM) before spreading to respiratory epithelia through the adherens junction protein nectin-4. However, the roles of these receptors in transmission from infected to naive hosts have not yet been formally tested. To experimentally addressing this question, we established a model of CDV contact transmission between ferrets. We show here that transmission of wild-type CDV sometimes precedes the onset of clinical disease. In contrast, transmission was not observed in most animals infected with SLAM- or nectin-4-blind CDVs, even though all animals infected with the nectin-4-blind virus developed sustained viremia. There was an unexpected case of transmission of a nectin-4-blind virus, possibly due to biting. Another unprecedented event was transient viremia in an infection with a SLAM-blind virus. We identified three compensatory mutations within or near the SLAM-binding surface of the attachment protein. A recombinant CDV expressing the mutated attachment protein regained the ability to infect ferret lymphocytes in vitro, but its replication was not as efficient as that of wild-type CDV. Ferrets infected with this virus developed transient viremia and fever, but there was no transmission to naive contacts. Our study supports the importance of epithelial cell infection and of sequential CDV H protein interactions first with SLAM and then nectin-4 receptors for transmission to naive hosts. It also highlights the in vivo selection pressure on the H protein interactions with SLAM.IMPORTANCE Morbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) are highly contagious. Despite extensive knowledge of how morbilliviruses interact with their receptors, little is known about how those interactions influence viral transmission to naive hosts. In a ferret model of CDV contact transmission, we showed that sequential use of the signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors is essential for transmission. In one animal infected with a SLAM-blind CDV, we documented mild viremia due to the acquisition of three compensatory mutations within or near the SLAM-binding surface. The interaction, however, was not sufficient to cause disease or sustain transmission to naive contacts. This work confirms the sequential roles of SLAM and nectin-4 in morbillivirus transmission and highlights the selective pressure directed toward productive interactions with SLAM.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vírus da Cinomose Canina/patogenicidade , Cinomose/transmissão , Hemaglutininas Virais/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Viremia/transmissão , Animais , Sítios de Ligação , Chlorocebus aethiops , Modelos Animais de Doenças , Cinomose/genética , Cinomose/metabolismo , Vírus da Cinomose Canina/genética , Feminino , Furões , Hemaglutininas Virais/química , Hemaglutininas Virais/genética , Ativação Linfocitária , Linfócitos/virologia , Masculino , Modelos Moleculares , Mutação , Ligação Proteica , Células Vero , Viremia/genética , Viremia/metabolismo , Internalização do Vírus
9.
Virus Res ; 247: 21-25, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29421305

RESUMO

Canine distemper (CD) is the most deadly disease in dogs with mortality rates reaching 50%. The pathological agent, the CD virus (CDV), generally causes a severe systemic disease, although the nervous form can coexist with the acute catarrhal form in the same individual. In this study, we describe an outbreak of 18 cases of CD that occurred in 2015 in a German Shepherd dog population in northwestern Gabon. In addition, we determined the sequence of the CDV genotype associated with this fatal distemper infection in Gabon and compared it with other published CDV sequences. The CDV was detected using RT-PCR on cDNA from RNA of harvested brains and other organs. The identification was confirmed by sequencing amplicons. Moreover, we obtained the whole genome sequence using high-throughput sequencing. Phylogenetic analysis revealed that Gabonese CDV strain clustered with European strains belonging to the Europe genotype. This study provided the first molecular detection of the CDV strain associated with this fatal distemper infection in Central Africa region.


Assuntos
Vírus da Cinomose Canina/genética , Cinomose/epidemiologia , Genoma Viral , Filogenia , RNA Viral/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , DNA Complementar/genética , Cinomose/mortalidade , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/isolamento & purificação , Cães , Europa (Continente)/epidemiologia , Gabão/epidemiologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Análise de Sobrevida , Sequenciamento Completo do Genoma
10.
Bing Du Xue Bao ; 33(1): 116-122, 2017 Jan.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-30702831

RESUMO

Infection by the canine distemper virus (CDV) results in a fulminating infectious disease that causes serious harm to dogs. With breaking 'of the CDV into primates, some researchers wonder if the CDV will cause a serious infection in humans. To better understand the potential of the CDV to infect humans, the molecular characteristics of the CDV, how it infects target cells in the host, the key receptors involved in infection, and infection of human cells in vitro were assessed in this review. There is no direct evidence that CDV can colonize and grow in humans. Two key receptors, SLAM and nectin-4, in hunans and primates have high identity, and the CDV can infect human cells in vitro. Therefore, we must pay close attention to the potential threat of infection by the CDV in humans.


Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/virologia , Animais , Cinomose/transmissão , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/isolamento & purificação , Doenças do Cão/virologia , Cães , Humanos
11.
BMC Vet Res ; 12: 78, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27170307

RESUMO

BACKGROUND: Canine distemper virus (CDV) is the etiological agent of one of the most infectious diseases of domestic dogs, also known as a highly prevalent viral infectious disease of carnivores and posing a conservation threat to endangered species around the world. To get a better panorama of CDV infection in different Orders, a retrospective and documental systematic review of the role of CDV in different non-dog hosts was conducted. The bibliographical data were collected from MedLine/PubMed and Scopus databases. Data related to Order, Family, Genus and Species of the infected animals, the presence or absence of clinical signs, mortality, serological, molecular or antigenic confirmation of CDV infection, geographic location, were collected and summarized. RESULTS: Two hundred seventeen scientific articles were considered eligible which includes reports of serological evaluation, and antigenic or genomic confirmation of CDV infection in non-dog hosts. CDV infects naturally and experimentally different members of the Orders Carnivora (in 12 Families), Rodentia (four Families), Primates (two Families), Artiodactyla (three Families) and Proboscidea (one Family). The Order Carnivora (excluding domestic dogs) accounts for the vast majority (87.5%) of the records. Clinical disease associated with CDV infection was reported in 51.8% of the records and serological evidence of CDV infection in apparently healthy animals was found in 49.5% of the records. High mortality rate was showed in some of the recorded infections in Orders different to Carnivora. In non-dog hosts, CDV has been reported all continents with the exception of Australasia and in 43 different countries. CONCLUSIONS: The results of this systematic review demonstrate that CDV is able to infect a very wide range of host species from many different Orders and emphasizes the potential threat of infection for endangered wild species as well as raising concerns about potential zoonotic threats following the cessation of large-scale measles vaccination campaigns in the human population.


Assuntos
Cinomose , Animais , Animais Domésticos , Cinomose/epidemiologia , Cinomose/transmissão , Vírus da Cinomose Canina , Espécies em Perigo de Extinção , Humanos , Infecções por Morbillivirus/transmissão , Zoonoses/transmissão , Zoonoses/virologia
12.
Infect Genet Evol ; 41: 135-141, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27060756

RESUMO

Canine distemper virus (CDV) is a highly contagious pathogen for domestic dogs and several wild carnivore species. In Brazil, natural infection of CDV in dogs is very high due to the large non-vaccinated dog population, a scenario that calls for new studies on the molecular epidemiology. This study investigates the phylodynamics and amino-acid signatures of CDV epidemic in South America by analyzing a large dataset compiled from publicly available sequences and also by collecting new samples from Brazil. A population of 175 dogs with canine distemper (CD) signs was sampled, from which 89 were positive for CDV, generating 42 new CDV sequences. Phylogenetic analysis of the new and publicly available sequences revealed that Brazilian sequences mainly clustered in South America 1 (SA1) clade, which has its origin estimated to the late 1980's. The reconstruction of the demographic history in SA1 clade showed an epidemic expanding until the recent years, doubling in size every nine years. SA1 clade epidemic distinguished from the world CDV epidemic by the emergence of the R580Q strain, a very rare and potentially detrimental substitution in the viral genome. The R580Q substitution was estimated to have happened in one single evolutionary step in the epidemic history in SA1 clade, emerging shortly after introduction to the continent. Moreover, a high prevalence (11.9%) of the Y549H mutation was observed among the domestic dogs sampled here. This finding was associated (p<0.05) with outcome-death and higher frequency in mixed-breed dogs, the later being an indicator of a continuous exchange of CDV strains circulating among wild carnivores and domestic dogs. The results reported here highlight the diversity of the worldwide CDV epidemic and reveal local features that can be valuable for combating the disease.


Assuntos
Vírus da Cinomose Canina/genética , Cinomose/epidemiologia , Epidemias , Hemaglutininas Virais/genética , Filogenia , RNA Viral/genética , Substituição de Aminoácidos , Animais , Teorema de Bayes , Brasil/epidemiologia , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/classificação , Vírus da Cinomose Canina/isolamento & purificação , Cães , Feminino , Masculino , Epidemiologia Molecular , Mutação
13.
Mol Phylogenet Evol ; 92: 147-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26151219

RESUMO

Canine distemper virus (CDV) (Paramyxoviridae-Morbillivirus) is a worldwide spread virus causing a fatal systemic disease in a broad range of carnivore hosts. In this study we performed Bayesian inferences using 208 full-length hemagglutinin gene nucleotide sequences isolated in 16 countries during 37 years (1975-2011). The estimated time to the most recent common ancestor suggested that current CDV strains emerged in the United States in the 1880s. This ancestor diversified through time into two ancestral clades, the current America 1 lineage that recently spread to Asia, and other ancestral clade that diversified and spread worldwide to originate the remaining eight lineages characterized to date. The spreading of CDV was characterized by several migratory events with posterior local differentiation, and expansion of the virus host range. A significant genetic flow between domestic and wildlife hosts is displayed; being domestic hosts the main viral reservoirs worldwide. This study is an extensive and integrative description of spatio/temporal population dynamics of CDV lineages that provides a novel evolutionary paradigm about the origin and dissemination of the current strains of the virus.


Assuntos
Vírus da Cinomose Canina/genética , Cinomose/transmissão , Internacionalidade , Filogeografia , América , Animais , Ásia , Sequência de Bases , Cinomose/virologia , Cães , Hemaglutininas/genética , Especificidade de Hospedeiro/genética , Filogenia , Fatores de Tempo
14.
Integr Zool ; 10(4): 329-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939829

RESUMO

Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Tiger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mortality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was associated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikhote-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research priorities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collection of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conservation threat, and modeling should complement disease surveillance and targeted research to assess the potential impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an important precursor to considering control measures.


Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/epidemiologia , Tigres/virologia , Animais , Conservação dos Recursos Naturais , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cinomose/mortalidade , Cinomose/transmissão , Dinâmica Populacional , Federação Russa/epidemiologia
15.
J Virol ; 89(10): 5724-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787275

RESUMO

UNLABELLED: Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. IMPORTANCE: While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions.


Assuntos
Antígenos CD/metabolismo , Astrócitos/virologia , Moléculas de Adesão Celular/metabolismo , Vírus da Cinomose Canina/fisiologia , Vírus da Cinomose Canina/patogenicidade , Receptores de Superfície Celular/metabolismo , Substituição de Aminoácidos , Animais , Antígenos CD/genética , Encéfalo/metabolismo , Encéfalo/virologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Cinomose/metabolismo , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/genética , Cães , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , Vírus do Sarampo/patogenicidade , Nectinas , Receptores de Superfície Celular/genética , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Panencefalite Esclerosante Subaguda/etiologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus
17.
Proc Natl Acad Sci U S A ; 112(5): 1464-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605919

RESUMO

Morbilliviruses cause many diseases of medical and veterinary importance, and although some (e.g., measles and rinderpest) have been controlled successfully, others, such as canine distemper virus (CDV), are a growing concern. A propensity for host-switching has resulted in CDV emergence in new species, including endangered wildlife, posing challenges for controlling disease in multispecies communities. CDV is typically associated with domestic dogs, but little is known about its maintenance and transmission in species-rich areas or about the potential role of domestic dog vaccination as a means of reducing disease threats to wildlife. We address these questions by analyzing a long-term serological dataset of CDV in lions and domestic dogs from Tanzania's Serengeti ecosystem. Using a Bayesian state-space model, we show that dynamics of CDV have changed considerably over the past three decades. Initially, peaks of CDV infection in dogs preceded those in lions, suggesting that spill-over from dogs was the main driver of infection in wildlife. However, despite dog-to-lion transmission dominating cross-species transmission models, infection peaks in lions became more frequent and asynchronous from those in dogs, suggesting that other wildlife species may play a role in a potentially complex maintenance community. Widespread mass vaccination of domestic dogs reduced the probability of infection in dogs and the size of outbreaks but did not prevent transmission to or peaks of infection in lions. This study demonstrates the complexity of CDV dynamics in natural ecosystems and the value of long-term, large-scale datasets for investigating transmission patterns and evaluating disease control strategies.


Assuntos
Animais Domésticos , Animais Selvagens , Vírus da Cinomose Canina/patogenicidade , Morbillivirus/patogenicidade , Animais , Teorema de Bayes , Cinomose/transmissão , Cinomose/virologia , Vírus da Cinomose Canina/fisiologia , Cães , Leões , Morbillivirus/fisiologia
19.
PLoS One ; 9(10): e110811, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354196

RESUMO

Lethal infections with canine distemper virus (CDV) have recently been diagnosed in Amur tigers (Panthera tigris altaica), but long-term implications for the population are unknown. This study evaluates the potential impact of CDV on a key tiger population in Sikhote-Alin Biosphere Zapovednik (SABZ), and assesses how CDV might influence the extinction potential of other tiger populations of varying sizes. An individual-based stochastic, SIRD (susceptible-infected-recovered/dead) model was used to simulate infection through predation of infected domestic dogs, and/or wild carnivores, and direct tiger-to-tiger transmission. CDV prevalence and effective contact based on published and observed data was used to define plausible low- and high-risk infection scenarios. CDV infection increased the 50-year extinction probability of tigers in SABZ by 6.3% to 55.8% compared to a control population, depending on risk scenario. The most significant factors influencing model outcome were virus prevalence in the reservoir population(s) and its effective contact rate with tigers. Adjustment of the mortality rate had a proportional impact, while inclusion of epizootic infection waves had negligible additional impact. Small populations were found to be disproportionately vulnerable to extinction through CDV infection. The 50-year extinction risk in populations consisting of 25 individuals was 1.65 times greater when CDV was present than that of control populations. The effects of density dependence do not protect an endangered population from the impacts of a multi-host pathogen, such as CDV, where they coexist with an abundant reservoir presenting a persistent threat. Awareness of CDV is a critical component of a successful tiger conservation management policy.


Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/epidemiologia , Modelos Biológicos , Animais , Reservatórios de Doenças , Cinomose/transmissão , Cinomose/virologia , Cães , Espécies em Perigo de Extinção , Extinção Biológica , Feminino , Tamanho da Ninhada de Vivíparos , Rússia (pré-1917) , Análise de Sobrevida , Tigres
20.
Vet Microbiol ; 174(1-2): 50-9, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25258173

RESUMO

From December 2012 to May 2013, an outbreak occurred among urban wild carnivores from Berlin. We collected 97 free-ranging raccoons from the city area. PCR assays, histopathology and immunohistochemistry confirmed canine distemper virus (CDV) infection in 74 raccoons. Phylogenetic analysis of haemagglutinin gene fragments (1767 nucleotides) of CDV isolated from four raccoons showed close relation to CDV isolates from foxes from Germany and a domestic dog from Hungary; all belonging to the "Europe" lineage of CDV. These study results suggest an inter-species transmission of CDV as the origin for the outbreak among the raccoon population. Implications for domestic pets and suggested interspecies transmission between urban wildlife and raccoons are discussed. This is the first major outbreak of CDV amongst free-ranging raccoons in Europe.


Assuntos
Surtos de Doenças/veterinária , Vírus da Cinomose Canina/genética , Cinomose/epidemiologia , Guaxinins/virologia , Animais , Sequência de Bases , Análise por Conglomerados , Cinomose/transmissão , Cinomose/virologia , Cães/virologia , Alemanha/epidemiologia , Imuno-Histoquímica/veterinária , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA